If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-5x-1000=0
a = 6; b = -5; c = -1000;
Δ = b2-4ac
Δ = -52-4·6·(-1000)
Δ = 24025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{24025}=155$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-155}{2*6}=\frac{-150}{12} =-12+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+155}{2*6}=\frac{160}{12} =13+1/3 $
| 4x-7=-4(2x-1/2) | | x+(-6)=34= | | 6x^2-89x+315=0 | | √8x+1=×+2 | | 24=16+a | | 2(x+1=x+12 | | 6x^2+91x+85=0 | | -10y=-10 | | 8x^2-7x-17=0 | | 9=3x+4x-5 | | 5b^2-6b-104=0 | | 6^(3x-4)-6=30 | | 6x+7+2x=47 | | (x+2)+(7x-9)+(3x)=180 | | 4.1+10m=6.34 | | -4x+2+6x=6 | | 2.3+10m=7.15 | | 5x+1+6x=133 | | 3.8+10m=7.15 | | (q+7)(q–4)=0 | | -6h+20=-h | | -9+1x=0 | | 2n-1=53 | | (2x-5)=3x+10 | | -7-2x=-4x+8 | | 2x–1=3x–6 | | 4x^2+9=144 | | -7-2x=-4x+ | | 4.9+10m=7.52 | | 25=x/5+10 | | 5x/6x=15 | | -4p-3=2p+p |